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Abstract.

In type 1 diabetes management, mobile health applications are becoming a cor-

nerstone to empower people to self-manage their disease. There are many appli-

cations addressed to calculate insulin doses based on the current information (e.g.

carbohydrates intake) and a few of them are accompanied by modules able to su-

pervise postprandial conditions and recommend corrective actions if the user falls

in an abnormal state (i.e. hyperglycaemia or hypoglycaemia). On the other hand,

mobile apps favour the gathering of historical data from which machine learning

techniques can be used to predict if user conditions will worsen.

This work presents the application of k-nearest neighbour on the historical data

gathered on patients, so that given the information related to a sequence of meals,

the method is able to predict if the patient will fall in an abnormal condition. The

experimentation has been carried out with the UVA-Padova type 1 diabetes simu-

lator over eleven adult profiles. Results corroborate that the use of sequential data

improve significantly the prediction outcome when forecasts distinguish the type

of meal (breakfast, lunch and dinner).
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1. Introduction

Type 1 Diabetes Mellitus (T1DM) is a chronic disease that demands a strict control

of the Blood Glucose (BG) level of the patient. This BG control is required to avoid

hypoglycaemia or hyperglycaemia events, which are associated to serious short-term

and long-term complications, e.g. coma, blindness, sever kidney failure or even death

[7]. Despite that, it was estimated that in 2003, 7.1% of hypoglycaemia events required

emergency assistance [9], and it is also estimated that about 6-10% of all deaths in people

with T1DM result from hypoglycaemia [2]. Therefore, there is a need to improve the

control of BG in people with T1DM.

This paper studies how sequences of data (recorded by T1DM people) can be used

to predict hypoglycaemia and hyperglycaemia events using the k-nearest neighbours (k-

NN) method.

This paper is organized as follows: First we start by the explanation of the related

work. Then, we describe and justify the methodology and the criteria used in data la-
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belling and sequence generation. Next, we explain our experimentation set-up and the

results achieved. Afterwards results are discussed and conclusions are presented.

2. Related work

In depth research has been done on developing new methods to predict hypoglycaemia

and hyperglycaemia events and most of these methods are based on the analysis of the

Continuous Glucose Monitoring (CGM) as in case of [2,5,10,11,12].

The need of CGM data is also a limiting factor, due to compatibility and connection

issues, when developing applications that need this information to predict BG levels and

alert for possible hypoglycaemia or hyperglycaemia events. Considering this possible

lack of information, [13] presents a system that uses only carbohydrates ingestion and

insulin doses to feed physiological models in order to predict hypoglycaemia events us-

ing support vector machines. Nevertheless, the results obtained are far from those using

CGM data. In the same way, [14] studies the use of different artificial intelligence tech-

niques to predict hypoglycaemia and hyperglycaemia events in type 2 diabetes patients

using a few (e.g. two samples) BG readings per day.

Regarding the use of sequences in a k-NN system, one of the first attempts is [8]

for solving an intrusion detection problem. Moreover, the authors in [3], similarly to

this paper, represent sequences by concatenating records. However, the authors apply the

methodology to predict the failure of complex medical equipment, instead of hypogly-

caemia or hyperglycaemia events.

In the field of diabetes, case-based reasoning with sequential information regarding

the actions of the subject has been studied in [1]. However, the objective of the work is

to provide insulin doses recommendations, instead of predicting BG levels.

3. Methodology

KNN is a very well established methodology used for class prediction: given a set of

historical examples ei ∈ E , each of them consisting of a situation si and a class ci ∈ C,

and a new query situation q, KNN returns the class cq ∈ C predicted for q, according to

the similarity of q with the historical data E . The most common representation of data

in si are sets of attributes, e.g. si = {(temperature,high),(age,34)}. In some occasions

KNN has been used to handle sequential information meaning that information of a case

is structured as follows:

ei = 〈(s1
i ,s

2
i , . . . s

n
i ),ci〉. (1)

In the problem faced in this paper, the following information is available: Time

(T) in minutes; Carbohydrate (CH) intakes (mg); Bolus insulin dose (B);CGM readings

(mg/dL). This information is used to create an event for each meal.

Given the set of meal events, these are sorted according to the time attribute and pro-

cessed to create sequences of meals where each sequence contains all the ordered meals

of a time window of d days.The class of each sequence of meals is labelled according to

the postpandrial status (PS) of the last meal of the sequence. These sequences are then



used to predict the class of a given sequence of meals using KNN. The similarity measure

that we used is a generic Euclidean distance. To manage the unbalanced distribution of

hypo and hyper labels, two separated case bases have been defined: hyper and no hyper,

and hypo and no hypo.

Therefore, postprandial states have been labelled following two procedures:

• PS is labelled as hypoglycaemia if a CGM reading between 2 and 6 hours after

the bolus administration is below 70 mg/dl [17], otherwise it is labelled as non-

hypoglycaemia.

• PS is labelled as hyperglycaemia if CGM readings are above 180 mg/dl during

at least 60 minutes between 2 and 6 hours after the bolus administration [17],

otherwise it is labelled as non-hyperglycaemia.

4. Experimentation and results

The experimentation has been carried out using the UVA-Padova type 1 diabetes simu-

lator [16] and it compares the use of k-NN with sequential data with the k-NN without

sequential data, only one-shot data.

4.1. Dataset

The dataset consists of 11 virtual adults and the corresponding meal information and

label along 500 simulated days. Virtual subjects took three meals per day (breakfast,

lunch and dinner).The hypoglycaemia case bases had 3646 hypoglycaemia entries and

12726 non-hypoglycaemia. The hyperglycaemia case bases had 2833 hyperglycaemia

entries and 13539 non-hyperglycaemia.

4.2. Experimental set-up

It has been empirically decided to use 4-day long sequences, which means that each

sequence has the corresponding meals of four days. Since the variability of the results

was not significant depending on the number of neighbours k of the k-NN method, and

also in order to avoid over-fitting, k has been chosen following the rule of thumb2 for each

case. Moreover, three different scenarios have been implemented to analyse different

hypothesis:

• All meals together: in this scenario the dataset contains all types of meals together

(breakfasts, lunches and dinners).

• Meal-based recommendation: the original dataset is split into three different sub-

sets, one per type of meal (breakfast, lunch and dinner) in order to study if this

split improves the results since the context of each meal is different.

• Personalisation: the original dataset is split into as many subsets as virtual subjects

in order to study if the use of a personal set of past experiences, instead of using

cases from other subjects, improves the accuracy of the predictions.

2The rule of thumb proposes k as the square root of the number of points in the training data set [6]



G.C.
One-shot Sequences

Accuracy (%) TPR FNR FPR Accuracy (%) TPR FNR FPR

Hyper 68.14±0.0039 0.7451 0.2549 0.3823 70.29±0.0045 0.7186 0.2814 0.3128

Hypo 68.72±0.0033 0.7070 0.2930 0.3325 67.03±0.0061 0.6642 0.3358 0.3237

Table 1. All meals together. Results obtained using temporal data with the proposed methodology (sequences)

and without using temporal data (one-shot), where G.C. is the glucose condition.

G.C. Meal
One-shot Sequences

Accuracy (%) TPR FNR FPR Accuracy (%) TPR FNR FPR

Hypo B 75.25±0.0045 0.7758 0.2242 0.2707 81.00±0.0049 0.8555 0.1445 0.2354

Hypo L 73.65±0.0041 0.7296 0.2704 0.2566 77.31±0.0060 0.7350 0.2650 0.1887

Hypo D 76.19±0.0106 0.7413 0.2587 0.2175 83.09±0.0044 0.8878 0.1122 0.2261

Hyper B 78.07±0.0057 0.7789 0.2210 0.2177 83.64±0.0077 0.8258 0.1742 0.1530

Hyper L 72.80±0.0066 0.8132 0.1867 0.3572 83.24±0.0044 0.7994 0.2006 0.1345

Hyper D 64.09±0.0063 0.6947 0.3053 0.4129 73.89±0.0060 0.7652 0.2348 0.2874

Table 2. Meal-based recommendation. Results of the meal-based recommendation, where G.C. is the glucose

condition, B is the breakfast, L is the lunch, and D is the dinner

G.C.
One-shot Sequences

Accuracy (%) TPR FNR FPR Accuracy (%) TPR FNR FPR

Hyper 71.57±0.0705 0.7394 0.2606 0.3080 56.04±0.0457 0.5650 0.4350 0.4448

Hypo 74.96±0.0691 0.7978 0.2022 0.2986 55.62±0.0282 0.5386 0.4613 0.4262

Table 3. Personalisation. Results per patient using sequences and without using them (one-shot), where G.C.

is the glucose condition.

For each scenario, we have compared the one-shot (entries with only one meal) with

our sequential data approach (sequences of four days). Stratified 10-fold cross validation

has been performed and the resulting sets have been balanced randomly sub-sampling

the majority class. The following metrics was used to compare the results: The accuracy3

because it provide us the overall information of how often the classifier is correct, true

positive rate (TPR)4 also known as recall or sensitivity, false negative rate (FNR)5, and

false positive rate (FPR)6.

4.3. Results and discussion

The results are summarized in Tables 1,2,3 and 4, which show the average TPR, FNR

and FPR and the average is standard deviation of the accuracy along the cross-validation

folds.

The results of all meals together (Table 1) show that the use of sequences does

not provide an improvement in terms of either accuracy, TPR, FNR or FPR, because

the context of each type of meal is so different that predicting the class of a meal (e.g.

breakfast) relying on other type of meals (e.g. dinner) is useless.

On the other hand, when datasets are divided according to the type of meal (see Ta-

ble 2), the overall performance increases (TPRs up to 0.88 and accuracies up to 83% have

3Accuracy = (True Positives + True Negatives)/ total number of instances
4TPR = True Positives/(True Positives+False Negatives)
5FNR = False Negatives/(True Positives+False Negatives)
6FPR = False Positives/(False Positives+True Negatives)



G.C. Meal
One-shot Sequences

Accuracy (%) TPR FNR FPR Accuracy (%) TPR FNR FPR

Hypo B 56.41±0.0467 0.5190 0.4809 0.3907 52.11±0.0349 0.4042 0.5958 0.3619

Hypo L 62.31±0.0577 0.6070 0.3930 0.3607 55.51±0.0523 0.4891 0.5109 0.3788

Hypo D 62.94±0.0650 0.6024 0.3976 0.3435 57.78±0.0716 0.5695 0.4305 0.4139

Hyper B 52.35±0.0549 0.4544 0.5456 0.4073 49.64±0.0555 0.4354 0.5646 0.4425

Hyper L 57.82±0.1041 0.5430 0.4570 0.3865 51.81±0.0681 0.4758 0.5242 0.4396

Hyper D 59.55±0.0579 0.6087 0.3913 0.4177 53.77±0.0377 0.5135 0.4865 0.4382

Table 4. Personalisation. Results per patient of the meal-based recommendation, where G.C. is the glucose

condition, B is the breakfast, L is the lunch, and D is the dinner

been achieved, while FNR and FPR are significantly lower, from 0.25 to 0.11), which

reinforces the previous conclusion. Furthermore, in this scenario, the use of sequential

data clearly outperforms the k-NN with one-shot data meaning, which highlights the

relevance of past information to predict hypo- and hyperglycaemia events.

The results achieved using personal datasets (Tables 3 and 4) are worse than the

achieved in the previous scenario, except when the dataset is not divided by the type of

meal and sequences are not used (see Table 3), for which results are slightly better. These

results mean that an over-split of the data available finally leads to a low performance

due to a lack of data. Moreover, if we consider that 500 days have been simulated and a

greater amount of data could be difficult to be available for real subjects, we can conclude

that the use of personal datasets with the proposed methodology is highly inefficient.

5. Conclusions

The use of continuous glucose monitoring is crucial to help people with diabetes to

prevent hyperglycaemia and hypoglycaemia events that could convey severe health

problems. However, continuous glucose monitors are not always available. This paper

presents a prediction methodology based on sequencing patient data and forecasting

their status using k-NN has been presented towards this end. The proposed methodol-

ogy achieves a TPR up to 0.88 considering only carbohydrates intakes, bolus dose and

preprandial blood glucose on UVA/Padova type 1 diabetes simulator, depending on the

context. k-NN, however, does not provide an explicit pattern of the patient behaviour

regarding the disease in order to provide medical evidence for clinicians. In a future

work, other eager mechanisms for sequence learning [15], or even its hybridization with

sequence learning as done in [4] should be explored, or even a fuzzy approach in the

labelling of the instances in order to avoid the crisp borders.
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